HF115FD

MINIATURE HIGH POWER RELAY

File No.:134517

File No.:116934

File No.:CQC12002084995 CQC17002176309

Features

- 16A switching capability
- Low height: 15.7 mm
- 5kV dielectric strength (between coil and contacts)
- Creepage distance: 10mm
- Meet reinforce insulation
- Product in accordance to IEC 60335-1 available
- Sockets available
- UL insulation system: Class F available
- Environmental friendly product (RoHS compliant)
- Outline Dimensions: (29.0 x 12.7 x 15.7) mm

(C	0	N	T/	4C	Т	D	A1	Ά

1A, 1C
100mΩ max.(at 1A 6VDC)
See ordering info.
12A/16A 250VAC
440VAC / 300VDC
12A / 16A
3000VA / 4000VA
1 x 10 ⁷ ops
1H3A type: 1 x 10 ⁵ OPS (16A 277VAC, Resistive load, Room temp., 1s on 9s off)

COIL

Coil power	Approx. 400mV

COIL DATA at 23°C

500 - 2					
Nominal Voltage VDC	Pick-up Voltage VDC max.	Drop-out Voltage VDC min.	Max. Voltage VDC *	Coil Resistance Ω	
5	3.50	0.5	7.5	62 x (1±10%)	
6	4.20	0.6	9.0	90 x (1±10%)	
9	6.30	0.9	13.5	202 x (1±10%)	
12	8.40	1.2	18	360 x (1±10%)	
18	12.60	1.8	27	810 x (1±10%)	
24	16.80	2.4	36	1440 x (1±10%)	
48	33.60	4.8	72	5760 x (1±15%)	

Notes: *Maximum voltage refers to the maximum voltage which relay coil could endure in a short period of time.

CHARACTERISTICS

Insulation	resistanc	1000MΩ (at 500VDC)		
Dielectric	Betweer	coil & contacts	5000VAC 1min	
strength	Between	open contacts	1000VAC 1min	
Surge volt	age (betw	10kV (1.2 x 50μs)		
Operate ti	me (at no	15ms max.		
Release t	ime (at no	8ms max.		
Temperat	ure rise (a	55K max.		
Functional			98m/s²	
Shock resistance *		Destructive	980m/s	
Vibration	resistance	10Hz to150Hz 10g/5g		
Humidity		5% to 85% RH		
Ambient to	emperatu	-40°C to 85°C		
Termination	on	PCB		
Unit weigh	nt	Approx. 13.5g		
Construct	ion	Flux proofed		

Notes: 1) The data shown above are initial values.

- 2) * Index is not that of relay length direction.
- 3) UL insulation system: Class F, Class B

SAFETY APPROVAL RATINGS

	AgNi	1,2 type	12A 277VAC at 85°C
		3 type	20A 277VAC at 85°C
			16A 277VAC at 85°C
			16A 277VAC
		1,2 type	12A 277VAC at 85°C
		3 type	20A 277VAC at 85°C
UL/CUL			16A 277VAC at 85°C
			16A 277VAC
	AgSnO ₂		10A 277VAC at 105°C
			1/2 hp 120VAC at 70°C
			1 hp 240VAC at 70°C
			TV-5 120VAC
			B300
	AgNi	1,2 type	12A 250VAC at 85°C
		3 type	16A 250VAC at 85°C
	AgSnO ₂	1,2 type	12A 250VAC at 85°C
VDE		3 type	16A 250VAC at 85°C
			10A 250VAC at 105°C
			9A 250VAC COSØ=0.4 at 70°C

Notes: 1) All values unspecified are at room temperature.

 Only typical loads are listed above. Other load specifications can be available upon request.

HONGFA RELAY

ISO9001, ISO/TS16949, ISO14001, OHSAS18001, IECQ QC 080000 CERTIFIED

2017 Rev. 1.00T

ORDERING INFORMATION

Notes: 1) Flux-proofed relays can not be used in the environment with pollutants like H₂S, SO₂, NO₂, dust, etc.

2) Water cleaning or surface process is not suggested after the flux-proofed relays are assembled on PCB.

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT

Unit: mm

Outline Dimensions

3.5mm Pinning (HF115FD/ - - - - - - - - - - - - - -)

29 ± 0.3 12.7 ± 0.3 12.7 ± 0.3 12.7 ± 0.3 12.7 ± 0.3 12.7 ± 0.3 12.7 ± 0.3 5mm Pinning (HF115FD/ $\square\square\square$ - \square -2/3- \square)

PCB Layout (Bottom view)

3.5mm Pinning, 1 Pole

5mm Pinning, 1 Pole

5mm Pinning, 1 Pole

Wiring Diagram (Bottom view)

5mm Pinning, 1 Pole, 16A, HF115FD/ ___ -_ -3 -_

Remark: 1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm, tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm, tolerance should be ±0.3mm; outline dimension >5mm, tolerance should be ±0.4mm.

- 2) The tolerance without indicating for PCB layout is always ±0.1mm.
- 3) The width of the gridding is 2.52mm.

CHARACTERISTIC CURVES

MAXIMUM SWITCHING POWER

ENDURANCE CURVE

Remark:

- 1.Curve B: 1H1A(1H2A) Curve C: 1H3A
- 2.Test conditions:

NO, Resistive load, 250VAC,

Flux proofed type, Room temp.,1s on 9s off

Disclaimer

The specification is for reference only. See to "Terminology and Guidelines" for more information. Specifications subject to change without notice. We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

© Xiamen Hongfa Electroacoustic Co., Ltd. All rights of Hongfa are reserved.